References:  J. J. MorenoBalcazar, “ MeixnerSobolev orthogonal polynomials: MehlerHeine type formula and zeros,” Jr. Computational and Applied Mathematics, vol. 284, pp. 228234, 2015.
 I. E. Pritsker and X. Xie, “Expected number of real zeros for random Freud orthogonal polynomials,” Jr. Mathematical Analysis and Applications, vol. 429, no. 2, pp. 12581270, 2015.
 K. Castillo, “Monotonicity of zeros for a class of polynomials including hypergeometric polynomials,” Applied Mathematics and Computation, vol. 266, pp. 183193, 2015.
 P. Borwein and T. Erdelyi, Polynomials and polynomial inequalities. Springer, 1995.
 G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, Topics in polynomials: Extremal problems, inequalities, zeros. World Scientific Publishing, 1999.
 S. A. Tavares, Generation of multivariate Hermite interpolating polynomials. Chapman & Hall, CRC, 2006.
 C. H. Phillips, H. T. Nagle, and A. Chakrabortty, Digital control system analysis and design, 4th ed., Pearson Education, Inc., 2015.
 A. Abian, “The precise annulus containing all the zeros of a polynomial,” Periodica Mathematica Hungarica, vol. 14, no. 1, pp. 107109, 1983.
 E. Rouche, “Memoire sur la seire de Lagrange,” Jr. Ecole Polytech., vol. 22, pp. 217218, 1862.
 N. E. Mastorakis, “Robust stability of polynomials: New approach,” Jr. Optimization Theory and Applications, vol. 93, no. 3, pp. 63568, 1997.
 S. Grammatico, A. Subbaraman, and A. R. Teel, “Discretetime stochastic control systems: A continuous Lyapunov function implies robustness to strictly causal perturbations,” Automatica, vol. 49, no. 10, pp. 29392952, 2013.
 O. Hazir, M. Haouari, and E. Erel, “Robust scheduling and robustness measures for the discretetime/cost tradeoff problem,” European Jr. Operational Research, vol. 207, no. 2, pp. 633643, 2010.
 V. Sundarapandian, “Exponential stabilizability and robustness analysis for discretetime nonlinear systems,” Applied Mathematics Letters, vol. 18, no. 7, pp. 757764, 2005.
 V. L. Kharitonov, “Asymptotic stability of an equilibrium position of a family of systems of linear differential equations,” Differential'nye Uravneniya, vol. 14, no. 11, pp. 20862088, 1978.
 B. R. Barmish, New tools for robustness of linear systems. MacMillan, 1994.
 D. van Dulst, “A functional analytic proof of Rouche’s theorem,” The American Mathematical Monthly, vol. 78, no. 7, pp. 770771, 1971.
 A. Abian, “Hurwitz’ theorem implies Rouche’s theorem,” Jr. Mathematical Analysis and Applications, vol. 61, no. 1, pp. 113115, 1977.
 D. Challener and Lee Rubel, “A converse to Rouche’s theorem,” The American Mathematical Monthly, vol. 89, no. 5, pp. 302305, 1982.
 E. G. Sklyarenko, “A topological version of the argument principle and Rouche’s theorem,” Fundam. Prikl. Mat., vol. 11, no. 5, pp. 209223, 2005.
 A. Melman, “Generalization and variations of Pellet’s theorem for matrix polynomials,” Linear Algebra and Its Applications, vol. 439, no. 5, pp. 15501567, 2013.
 R. Mortini and R. Rupp, “The symmetric versions of Rouche’s theorem via calculus,” Journal of Complex Analysis, vol. 214, pp. 19, 2014.
 Y. Monden and S. Arimoto, “Generalized Rouche’s theorem and its application to multivariate autoregression,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 28, no. 6, pp. 733738, 1980.
 K. Kishida, S. Yamada, and K. Bekky, “Note on poles of autoregressive type model, Part III: General case,” Jr. Mathematical Analysis and Applications, vol. 159, pp. 175201, 1991.
 V. Klimenok, “On the modification of Rouche’s theorem for the queuing theory problems,” Queuing Systems Theory and Applications, vol. 38, pp. 431434, 2001.
 I. J. B. F. Adan, J. S. H. van Leeuwaarden, and E. M. M. Winands, “On the application of Rouche’s theorem in queuing theory,” Operations Research Letters, vol. 34, no. 3, pp. 355360, 2006.
 S. C. Chan, H. H. Chen, and C. K. S. pun, “The design of digital allpass filters using secondorder cone programming,” IEEE Trans. Circuits and Systems II, vol. 52, no. 2, pp. 6670, 2005.
 G. J. Dolecek and V. Dolecek, “Application of Rouche’s theorem for MP filter design,” Applied Mathematics and Computation, vol. 211, no. 2, pp. 329335, 2009.
 A. K. ElSakkary, “A new criterion for estimating robust time delays for closed loop stability,” IEEE Trans. Automatic Control, vol. 35, no. 2, pp. 209210, 1990.
 A. K. ElSakkary, “The symmetric Rouche’s form for robustness,” IEEE Trans. Automatic Control, vol. 37, no. 6, pp. 810812, 1992.
 L. Zhou and M. T. Jong, “Comments on “Estimating the robust dead time for closedloop stability,” IEEE Trans. Automatic Control, vol. 34, no. 12, pp. 1324, 1989.
 N. E. Mastorakis, “Optimum radius of robust stability for Schur polynomials,” Jr. Optimization Theory and Applications, vol. 104, no. 1, pp. 165174, 2000.
 N. E. Mastorakis, “On the robust stability of 2D Schur polynomials,” Jr. Optimization Theory and Applications, vol. 106, no. 2, pp. 431439, 2000.
 W.S. Lu, “On stability robustness of discretetime systems: The complex variable approach of Mastorakis,” IEEE Conference, pp. 346349, 1998.
 C. I. Byrnes, D. S. Gilliam, and J. He, “Root locus and boundary feedback design for a class of distributed parameter systems,” SIAM Jr. Control Optimization, vol. 32, no. 5, pp. 13641427, 1994.
 E. K. Verriest, O. Sename, and P. Pepe, “Robust observercontroller for delaydifferential systems,” In Proceedings of the 41st IEEE Conference on Decision and Control, Los Vegas, pp. 981986, 2002.
 P. P. Vaidyanathan and S. K. Mitra, “Cascade interpretation of classical stability results,” In Proceedings of the 28th IEEE Conference on Decision and Control, Tampa, pp. 1116, 1989.
 M. Najafi, G. R. Sarhangi, and H. Wang, “Stabilizability of coupled wave equations in parallel under various boundary conditions,” IEEE Trans. Automatic Control, vol. 42, no. 9, pp. 13081312, 1997.
 W. Kase and Y. Mutoh, “A design of exact model matching control systems for a possibly wrong information on the interactor matrix,” In Proceedings of the IEEE ISIE Conference, Montreal, Quebec, pp. 188193, 2006.
 F. MerrikhBayat, “General formula for stability testing of linear systems with fractionaldelay characteristic equations,” Central European Journal of Physics, vol. 11, no. 6, pp. 855862, 2013.
 S. Mondie, M. Dambrine, and O. Santos, “Approximation of control laws with distributed delays: A necessary condition for stability,” Kybernetica, vol. 38, no. 5, pp. 541551, 2002.
 R. Rebarber and S. Townley, “Robustness and continuity of the spectrum for uncertain distributed parameter systems,” Automatica, vol. 31, no. 11, pp. 15331546, 1995.
 M. H. Annaby, Z. S. Mansour, and O. A. Ashour, “On reality and asymptotics of zeros of qHankel transforms,” Jr. Approximation Theory, vol. 160, pp. 223242, 2009.
 Y. Dolgin and E. Zeheb, “LMI characterization of general stability regions for polynomials,” IEEE Trans. Automatic Control, vol. 56, no. 4, pp. 890895, 2011.
 H. Ammari and F. Triki, “Resonances for microstrip transmission lines,” SIAM Jr. Applied Mathematics, vol. 64, no. 2, pp. 601636, 2003.
 S. BenzoniGavage, “Spectral inverse instability of solitary waves in Kortewig fluids,” Jr. Mathematical Analysis Applications, vol. 361, pp. 338357, 2010.
 W. D. Zhu, C. D. Mote, and B. Z. Guo, “Asymptotic distribution of eigenvalues of a constrained translating strip,” ASME Journal of Applied Mechanics, vol. 64, pp. 613619, 1997.
